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1. Introduction: Electrophilic and Nucleophilic
Processes —Reaction Mechanisms,
Thermodynamics, and Kinetics

Chemistry is the science of bond making and bond
breaking. A thorough knowledge of these processes in the
course of the chemical reaction lies at the heart of any
reaction mechanism. In the heterolytic cleavage of a bond,
the electron pair lies with one of the fragments, which
becomes electron rich, while the other fragment becomes
electron deficient. An electron-rich reagent gets attracted to
the center of the positive charge and forms a bond with an
electron-deficient species by donating electrons. The electron-
rich species is known as a nucleophile, and the electron-
deficient one, as an electrophiie!

Free radicals are generated through a corresponding
homolytic process where an equal share of one electron is
obtained by each fragment. Even radicals are designated as
electrophilic/nucleophilic depending on their tendency to
attack the reaction sites of relatively higher/lower electron
density. Moreover, nucleophiles (electrophiles) are Lewis
bases (acids) as well as reducing (oxidizing) agents since
they donate (accept) electrons, implying a connection among
electrophile-nucleophile chemistry, acichbase chemistry,
and oxidation-reduction chemistry. Since the majority of
the reactions can be analyzed through the electrophilicity/
nucleophilicity of various species involved, a proper under-
standing of these properties becomes essential. Some related
reviews on specific types of reactions are availdbtéalbeit
without a rigorous definition of electrophilicity.

The most important types of reactions we often encounter
are substitution, addition (including pericyclic reactions),
elimination (the opposite of addition reactions), and rear-
rangements. All these reactions are analyzed using thermo-
dynamic and kinetic data. While the former determines how
far a reaction will go (a large decrease in Gibbs free energy
implies a large value of the equilibrium constaKj, the
latter determines how fast it will take place (a smaller free
energy of activation value implies a larger rate constiant,
at a given temperature, i.e., a faster reaction). Although the
electrophilicity (nucleophilicity) and Lewis acidity (basicity)
are related, the former is traditionally assumed to be a kinetic
guantity and, hence, is estimated by relakw@lues whereas
the latter is a thermodynamic quantity and is measured by
relativeK values.

The concept of electrophilicity has been known for several
decades, although there has not been a rigorous definition
of it until recently, when, inspired by the experimental
findings of Maynard et al'® Parr et al* proposed a definition
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mention of and necessary comparison with all other known
popular electrophilicity measures. Several papers related to
this index appeared after the final submission of this article.
They are cited in appropriate places in the References and
Notes section. Section 2 introduces this global index, and
its local variants are described in section 3. Existing
electrophilicity scales are reported in section 4. Section 5
describes the use of the electrophilicity index in analyzing
the reactivity patterns in various intramolecular and inter-
molecular physicochemical processes. Variation of this
guantity during molecular vibrations, internal rotations, and
chemical reactions is mentioned in section 6. Sections 7 and
8 report the dynamical and spin dependent variants of this
index, respectively. Finally, section 9 contains some con-
cluding remarks.

2. Global Electrophilicity Index

2.1. Genesis

Popular qualitative chemical concepts such as electrone-
gativity*>16(y) and hardned$'8(y) have been provided with
rigorous definitions within the purview of conceptual density
functional theor§?-2¢ (DFT). Electronegativity is the negative
of chemical potential defin@8as follows for anN-electron
system with total energf and external potential(r),

rm AT (g_'I\EI)V(?) @)

u is the Lagrange multiplier associated with the normalization
constraint of DFT?2728|n DFT, the electron density(r))
is the basic variable instead of the many-particle wave
function (‘p(il,iz,...,s(’[\j)).

Hardness #f) is defined® as the corresponding second

aN v(r) aN V(r)

Sometimes &/, factor is included in the above definition.
Softness 9 is the reciprocal of hardnesS;= 1/x.

Complete characterization of &iparticle wave function
needs onlyN and»(r). While y andn measure the response
of the system wheilN varies at constant(r), the behavior
of the system for a change irfr) at fixedN is given by the
linear density response functi®hThe linear response of the
electronic cloud of a chemical species to a weak external
electric field is measured in terms of the static electric dipole
polarizability (). The electric dipole polarizability is a

amount of electron flow between two species. There resultedPresence of an electric field, and it represents a second-
an upsurge of interest in understanding the utility of this order variation in energy,

guantity in analyzing several diverse areas of chemistry. Little
did they* realize when they proposed this simple-looking
index that it contains an enormous potential to connect the
major facets of chemical sciences. It has been shown that
electrophilicity possesses adequate information regardingThe polarizability ¢) is then calculated as follows
structure, stability, reactivity, toxicity, bonding, interactions,
and dynamics. Only the concept of electrophilicity index
provided by Parr et al? its usefulness, and its various
possible extensions will be reviewed in this article. Citations These reactivity parameters are better appreciated by various
of the works related to the MaynardParr electrophilicity associated electronic structure principles. According to the
index are intended to be as exhaustive as possible withelectronegativity equalization principt&3*33 “All the con-

__[PE ) _
Oap = (aFaan)’ ab=xyz 3)

[= a0, + 04y + 0) (4)
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stituent atoms in a molecule have the same electronegativitys, 5
value given by the geometric mean of the electronegativities% I
of the pertinent isolated atoms”. Two hardness related g ¢
principles are the hardsoft acids and bases (HSAB) =Zast “
principle'”-20:3440 and the maximum hardness principte?®
While the former states that, “Hard acids prefer to coordinate '@
with hard bases and soft acids to soft bases for their & .5 :.. 3

bola

thermodynamic and kinetic properties”, the statement of the & MR

latter is, “There seems to be a rule of nature that molecules £ 2, + * & 1 L

arrange themselves so as to be as hard as possible”. On th% I ¢ c:..&v..a.'

basis of the inverse relationship,0 1/o*349°52 between ~ Z  leo 3 WX

hardness and polarizability, a minimum polarizability & 11?";‘3.,.

principle®®56 has been proposed which states fidThe T P

natural direction of evolution of any system is toward a state T

of minimum polarizability”.An inverse relationship between 0 P . . .

hardness and magnetizability has also been sH&mhich o 05 ‘él ¢ 2 Aff_"‘f‘ A;‘ v 8488
leads to a minimum magnetizability principle. A soft ) ectron Affinity )e ]

molecule is both polarizable and magnetizable. Figure 1. Correlation between electrophilicity index and electron

affinity of some neutral atoms and simple molecules in the ground-

Using a finite difference method, working equations for state parabola model. Reprinted with permission from ref 14.

the calculation ofy andz may be given &8 Copyright 1999 American Chemical Society.
_ItA ) Considering the situation when the system becomes saturated
x 2 by soaking up the maximum amount of electroN$Nmax
they set* (AE/AN) to be zero, implying
1=1—-A (6)
2
where | and A are the ionization potential and electron AE = _H (10)
affinity, respectively. Ifepomo and € .umo are the energies 2n
of the highest occupied and lowest unoccupied molecular and
orbitals, respectively, then the above equations can be
rewritter” using Koopmans' theorethas u
AN, = —— (11)
_ €nomo T ELumo n

= 7
x 2 " In eq 10, the numeratoxf) is quadratic and, hence, positive

o _ 8 and the denominator {2 is positive due to the convexity of
1= €Lumo ~ EHowmo (8) the energy, and hencAE is negative: the charge transfer is

Maynard and co-worke¥have shown that the reaction an energetically favorable process. Parr ét definedw as

rates from the fluorescence decay studies on the human /12 X2
immunodeficiency virus type 1 (HIV-1) nucleocapsid protein w=—= (12)
p7 (NG 7) interacting with several electrophilic agents 2n 2y

correlate strongly with the square of the electronegativity
divided by its chemical hardnesgf2n). The'/, factor arises
due to the definition of hardness used here (eq 2). The
quantityy?/2n is consideret>°to be related to the capacity
of an electrophile to promote a soft (covalent) reaction.
Prompted by this work of Maynard et af:>°an electrophi-
licity index (w) has been defined ag/2 by Parr et at?
They have showhi thatw measures the second-order energy
of an electrophile when it gets saturated with electrons.

as a measure of electrophilicity of the ligand, just as was
suggested by Maynard et %l.

This quantityw is called* the “electrophilicity index” and
is considered to be a measure of electrophilic power, just
as, in classical electrostatics, powerV4/R, andu andy
serve the purpose of potentiaV)( and resistanceR),
respectively. It is transparent from Figures3 thatw and
A are not equal but they are correldteahdw is more tightly
correlate® with A than withy, though all these quantities
measure the propensity of electron intake. Simcgepends
2.2. Prescription on bothl andA, it is expected thaf can provide similar

qualitative trends as whenever the variation it is not

To propose an electrophilicity index, Parr etdhssumed  very significant. This is commonly observed for the elements
a sea of free electron gas at zero temperature and zerdelonging to the same group in the periodic t&bénd the
chemical potential. When an electrophilic system (atom, functional groups containing them. It may be noted that
molecule, or ion) would get immersed into the sea, there takes care of the energy change due to the addition of a single
would be an electron flow of amouN from the sea to  electron whereas the energy lowering associated with
the system until the chemical potential of the system becomesmaximal electron flow is characterized ly. Considering
zero (cf. Sanderson’s princigft33). The resulting energy  the discontinuity in théE vs N curve® separate definitions
change (up to second order) associated with the electron-for electrophilicity have been proposédfor the charge

transfer process is donation and charge acceptance processes, respectively, as
1 w* = (u*)%2n, whereu* are the corresponding left and right
_ 1 2 derivatives obtained in the spirit of the Perdew, Parr, Levy,
AE=uAN+ ZW(AN) ©) and Balduz prescriptio?f?
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licity indices for the functional groups X¥(X = C, Si, Ge, Sn,
Pb, element 114; ¥= CHs, H, F, CI, Br, I, At). Reprinted with
permission from ref 60. Copyright 2005 American Chemical
Society.

In the present review we will restrict ourselves to various
ramifications ofw only. An update is provided here as a
“Perennial Review” to the original article “Chattaraj, P. K.;
Sarkar, U.; Roy, D. RChem. Re. 2006 106, 2065.”

3. Local Extensions and Site Selectivity

3.1. Local Electrophilicity

Global reactivity descriptors such as electronegativity,
chemical potential, hardness, polarizability, and electrophi-
licity as introduced in the last section are defined for the

system as a whole. To describe the site selectivity in a

molecule, local descriptors of reactivity have also been

proposed. An equivalent definition of hardness has been

given by1.62
1 N (N g\ A 4ot
=1 /T ) p(T) o dF

or its other varianf8~%% wheref(r) is the Fukui functioff~7°
and the hardness kernel can be written as

(13)

_1_ OFlel

26p(T) op(T")
where F[p] is the HohenbergKohn—Shani”:28 universal
functional.

n(r.T") (14)
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The Fukui function is by far the most important local
reactivity index. It is defined &%

H(7) = (O0p(F)aN), ¢y = (Oulov(F)y  (15)

Because of the discontinuities in slope of {{(€) versusN
curve>71 three types of Fukui functions can be written as
follows®®

for nucleophilic attack

o [P\ _ _ B
fO =) %) - i~ punel®)

for electrophilic attack

r =20~ 0 mam= prowll)
for radical attack
f(t) = %[f*(?) + ()] (16¢)

which capture the essence of Fukui’s frontier orbital theory.
A gradient correction methdd”™® and a variational ap-
proach*75for the calculation of(f) are known.

Other important local reactivity descriptors includg(r)
and V?o(f) (as analyzed by Badefj/” the molecular
electrostatic potentidf 8 and the quantum potenti&&The
guantum potential has been defined as

B 1- Vzpllz(_f,t)

2 pl/2 ) (17)

Vo(F.H) =

Two useful theories based &fy, are quantum fluid dynamics
(QFD)Y? and quantum theory of motion (QTMj.In the
former, the dynamics of a quantum system is mapped onto
that of a probability fluid under the guidance of a classical
potential augmented by a quantum potential, while in QTM
it is represented in terms of an ensemble of particle motions
governed by forces originating from both classical and
guantum potentials. In section 7 we will report the chemical
reactivity dynamics by making use of these concepts.
Another important local reactivity descriptor is the electron
localization function (ELF), which has been defified’ for
a single determinantal wave function in terms of various
kinetic energy densities (KohiSham, Weizseker and
Thomas-Fermi) or, equivalently, the related local temper-
ature§’ as

1+ (tt)
where
1 1|Vpl?
t=—Z|V‘Pi2——— (18b)
25 8 »p
and
= 3(3712)2/3 5/3 (18¢)
F 10 Y
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Sometimes it becomes difficult to analyze site selectivity 0.6
using these local dependent quantities. To tackle this
problem, the related condensed-to-atom variants are written
for the atomic sitek of the molecule. For example, the
corresponding Fukui functiond{, a = +, —, 0) can be
written®® by replacing the associated electron densities by

o
wn
1

M

Cl

e
B
1 L

4nr2cn(r) (in units of ® )

the respective electron populatiortg)( viz., 0‘3_“ Br
for nucleophilic attack 1 I
W= AN+ D) - g %) B
for electrophilic attack o1
i =aN) — g(N-1) (19b) 0.0% —

for radical attack
Figure 4. Radial distribution of philicity in the ground states of
fo(?) = 1-[fk+ +1.] (19¢) halogen atoms. Reprinted with permission from ref 93. Copyright

2 2003 American Chemical Society.
To tackle the hardsoft interactions better, local softnesses ¢, the above definition of philicity has been provided re-
have been defined #$* cently by Gaquez et af° They have starté® from a func-
L _ tional Taylor expansion of the energy functional followed
() = Sf(T) (20a) by the Ayers-Parr type minimization procedufebased on
and the Chattaraj Cedillo—Parr variational principl& to obtain

the above definition of philicit§? and its generalizatiorny*
8% = Sf° (20b) = w* fi, strengthening the original definition obtained
through the resolution of identity associated with the nor-
malization off(r). Of course, the two-parabola motfémay
not be appropriate in all cases. It may be noted that the con-
dition®*w* = w~ = w is vali®®*when there is a transfer of
a fraction (noninteger number) of an electron, as is the'tase
with the electrophilicity as opposed to the electron affinity,
which involves exactly one electron; hence, the former does

wherea = +, —, and 0 refer to nucleophilic, electrophilic,
and radical reactions, respectively. A local version of the
HSAB principle has been propos& in terms of these
quantities.

On the other hand, a local electrophilicity has been
introduced to analyze the electrophileucleophile reactions

better. It is defined §&92 not suffeP® from the derivative discontinuity probleff
It is important to note that the Fukui function and the
#2 #25 related quantities such a& andw* may not provide proper
= _Sj = fk+ = wfk+ (21) reactivity trends for hardhard interactiong}-°¢ as was long
2 2 ago pointed out by Klopma¥.Hard—hard interactions are

charge-controlled since they are ionic in nature, whereas
soft—soft interactions are frontier-controlled because of their
covalent nature. The charge-based descriptors would be better
suited to tackle the harehard interaction8* %6 Although
ambiguou$354 a local hardness has been shéwio be a

e oy . better descriptor of harehard reactions than the Fukui
0 =0 [H(F)di = [ofT)dT = [o(F)dT (22)  foton

A generalized version of this quantity has been termed as
philicity, which has been defined through the resolution of
the identity associated with the normalization of the Fukui
function a$®

where 3.2. Site Selectivity
o(T) = of(T) (22b) ~An analysi§ of phiIicity (o;{*) provides the Ioca] informa-
tion of a particular atomic site in a molecule being prone to
Note thatw(F) can provide botlw (using eq 22a) ant(r) elctrophilic, nucleophilic, or radical attaék.The global
(using eq 22b along witkw obtained from eq 22a) bii(r) electrophilicity of a molecule is determined by these local
needs an explicit knowledge of to give w(F). Moreover, ~ properties-*3% as was suggested by Ledd#° in his
w(F) can provides(r), S, and» with an input ofu. The cor-  €lectrostatic model.

responding condensed-to-atom variants may be defirféd as  The local reactivity of various atomic sites in a molecule
can be understood equivalently liy, s& or o (or its
ol =of’ oa=+,-,0 (22¢) variants proposed by Gquez et af®9) becauseS and w
(or w*) remain the same except for the cases where the
Equations 20 and 21 dictate eq 22b to be the natural choice.molecule is undergoing an intramolecular process such as
In the place off(F), one may use other normalized-to-one vibration, internal rotation, rearrangement, and/or interaction
quantities such as the shape functior) = p(r)/N, which, with a solvent or an external field where both the local and
however, may not be a better descriptor due to the lack of global descriptors change during the physicochemical process.
information regarding electron addition/removal. Prominent  Philicity and local softness, respectively, would be better
shell structures in the radial distribution of the philicity of intermolecular reactivity indices (because they are products
halogen atoms are depicted in FigureMstrong rationale of global and local indices) than the Fukui function for
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analyzing electrophilenucleophile interactions and hard

soft interactions. Recently, some of these aspects have been ¥ 21

numerically verifiedt°%102 Philicity and local softness es- %‘

sentially provide the same information that is provided by = -4+

the Fukui function regarding intramolecular reactivity trends s

except for the intramolecular processes wherand/orS ‘§ 6

also changes along witf{r). However, for analyzing the i

intermolecular reactivityf,® would be inadequate angl* s 84

(or w®) should be used to compare the hasbft (electro- é R: 0.9402
philic—nucleophilic) behavior of a given atomic site in one i SD: 0.7075
molecule with that of another atomic site in another molecule. 5'10‘ ° gi:;‘oom

For the same moleculé® is adequateWhile f* will take

care of reactivity variations on all atoms present in a molecule . .

(and will not be able to differentiate between the reactivities 10 11 12 13 14 15 16 17 18

of different molecules), the global quantiti€s {, w*, etc.) o (eV)

present in the definition will differentiate between the global Figure 5. Correlation between experimental electrophilicif) (

reactivity behavior of two (or more) molecules, and hence, %r;]d g]nedori?;lcgleﬁlfgttiz/oepshllcl:g;%zfir?ifna series Oef %Z?f&”ecﬂ'aégg't‘:g]

the p.erUCt may be ideal for describing th‘? !ntermOIeCUIar releasing and electron-withdrawing groupg in dntho—yandpar&

reactivity trends. Moreover, the global reactivity stems from  ogjtions. Reprinted with permission from ref 128. Copyright 2003

the local reactivities, Sinc¥ = Y x@ = > Xfid = X 3« fid, American Chemical Society.

where X = S w, o*, etc., which implies that a simple

addition of reactivities at all atomic sites will provide the conventionally used to describe the electrophilic power. A

global reactivity. In most of the molecules, a single (or a comparison ofE and w has been mad®&. Activation

few) atom(s) is (are) overwhelmingly more reactive (with hardnes®* and protonation energi¥8 have been used to

comparatively very largg&® values) than the rest and hence analyze electrophilic aromatic substitution reactions.

will provide an estimate of the global reactivity. Of course,  One of the most popular electrophilicity scales has been

the domain of applicability ofu* (or its variants proposed  proposed and used to explain diverse types of reactions by

by Gazquez et at?) ands* as intermolecular descriptors  Mayr and co-workerd?-120 Theyt06-120 haye demonstrated

needs to be analyzed in detail. through studies on a series of electrophiteicleophile
During an electrophilenucleophile interaction process, combination reactions that the absolute rate constants of these

when two reactants approach each other from a largereactions follow the following linear free energy relationship,

distance, they feel only the effect of the global electrophilicity

of each other and not its local counterpart. The molecule log k(20°C) = s(N + E) (24)

with the largerw value will act as an electrophile, and the ] o

other will behave as the nucleophile. The preferred interaction where E and N are respectively the electrophilicity and

will be through the most electrophilic site of the former and Nnucleophilicity parameters anslis a nucleophile-specific

the most nucleophilic site of the latter. The atom with the Slope parameter. This scale has been arg&étito be the

largest local electrophilicity value in the electrophile may generalization of the Ritchie’s scaté'** (eq 25) and is

not necessarily have this value larger than that of the applicable to a larger domain

nucleophile, especially when there is more than one active

electro(nucleo)philic site present in a molecule. Similar log(k/kg) = N, (25)

situations arise during an analysis of the corresponding local

and global softnesses, and the HSAB principl® can be wherek, andN.. are electrophile- and nucleophile dependent

0
-
N

at variance with its local counterp&°in those cases. parameters, respectively. Mayr’s scale is dSe analyze
o the HSAB principle. It has been used by other researchers
4. Electrophilicity Scales as well+126-128 Figure 5 show&® the linear correlation

betweenE and w for diazonium ions and their reactivity
4.1. Global Approach during interactions withz-nucleophiles.

Ever since IngoltP® proposed an electrophilicity scale, The carbene-philicity scal@txy) proposed by Mogg® 134
various experimental and theoretically calculated quantities on the basis of kinetic data has been shown to be useful in
have been made use of in analyzing the electrophilicity categorizing carben&8-138into electrophilic, ambiphilic, and
behavior of a group of molecules. Both electrophilicity and nucleophilic varieties. There exists a linear free energy
nucleophilicity have been estimatéthrough hydrogen-  relationship between the carbene-philicity and the related Taft
bond stretching force constants measured from the rotationalsubstituent parameters. These parameters have been made
spectra of various hydrogen-bonded dimers. The hydrogenuse o#3%14 in analyzing the connection between skin

bond strength given bl is related to nucleophilicities\) sensitization and electrophilicity. A comparison between
and electrophilicitiesE) as mexy andw has been made recentif.
The Swain-Scott free energy relationshi along with
k, = CNE (23) Legon’'$°1%electrophilicity scale have been made use of in

analyzing**the kinetics and mechanism of oxidation by halo-
whereC is a proportionality constant. It has been shown that gens and inter-halogens visvss their electrophilicity trends.
N O 1/E for a fixed value ok,, as expected. Here, the force As discussed in the previous section, a theoretical elec-
constant is considered to be a measure of the binding strengthrophilicity index ) has been proposed by Parr et'al.,
between an electrophile and a nucleophile and is an alternapprompted by a qualitative finding by Maynard et'&p?.144
tive to the corresponding bond dissociation energy which is As electrophilicity and nucleophilicity are physically inverse
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of each other, the multiplicative inverse )/(in the spirit mental rates of the reactions between HIV-1 nucleocapsid
of the definition of softnessS= 1/)) and an additive inverse  p7 zinc finger thiolates and different electrophilic ligands.
(1 — w) have been propos&d as possible definitions of It has been shown by Parr etfalthat the energy change
nucleophilicity. Of courseC/w and B8 — w), whereC and associated with the process of an atom or a molecule in the
B are constantsB may be zero also) for a given series of gas phase becoming saturated with electrons from the
molecules, may be considered as well. Similar inverse environment is given by this quantity and, hence, can be
behaviors have been proposed by otli&t82-146.147 The legitimately considered to be a definition for electrophilicity.
electrophilicity index ) obtained from several models for It may be noted that the basis of the definition given by
the charge dependence of the enéfgwithin a broad Maynard et al. is kinetic in nature whereas the interpretation
framework of valence state atoms in molecifi&d>! has by Parr et al. is thermodynamic in nature.
been reviewed recenthf® In an interesting study on the
nucleophilic substitution reaction of carbonyl compounds, 4.2. Local Approach
it has been show#? that the concerted reaction mechanism  The majority of the empirical electrophilicity scales
will be associated with a large electrophilicity/nucleophilicity introduced so far are global in nature. Their local variants
gap whereas the corresponding small gap will imply a were developed only recently, and most of them are based
stepwise reaction mechanism. on the Fukui functiorfé 7170 An elegant recent review is
Several electrophilicity scales based on different physi- OPtainable in ref 20. Applications of these descriptors in
cochemical properties have been proposed prior to theunderstanding the substituent effects on the electrophilic

introduction of the electrophilicity indexaf) rigorously ~ Processes™ *and related studie&™"" highlight the power
defined by Parr et af In addition to the Ingold prescrip- of these indices. Radical charge-transfer Fukui functions have

tion 193.153solution phase ionization potentidf,C NMR been usel® within an atoms-in-molecules (AIM) frame-
chemical shift€55-157 IR absorption frequencié&15charge work!" for recognizing the electrophilic and nucleophilic
decomposition&s LUMO energiess® 162 jonization poten- ~ CENters in a molecule. . o

tials 163 redox potentiald®* HPLC 15 solid-state synthesé® R_elatlve electrophilicity and rela_t|ve nucleophilicity are
Ke valuest®” isoelectrophilic windows® and the harmonic ~ defined as'/sc andsc /sc*, respectively*® Although they
oscillator models of the aromaticity (HOMA) indéR are ~ Perform bettef?. 1021812 than the Fukui function or local
some of the related quantities and subjects that have beersOftness ga?u%?;tsall% 1{?,;3035'0”3, they suffer from various
used to understand the electrophilic/nucleophilic character—gra‘wm‘ck RO light of the local HSAB prin-

istics of chemical systems. iple 8%°0a softness matching index has been defiffetf®
The various electrophilicity descriptors reported in this

for analyzing the regioselectivity as
section may be broadly classified into three categories: viz., W _ 2 _ 2
the kinetic descriptor that measures the rate at which an Ay=( —s)+(§ —s) (26)
electrophilic attack takes place, the thermodynamic descriptor
which measures the ease of such an attack, and a combinatiomwhen atoms andj of a nucleophile form a cycloadduct
of these two approaches through a linear free energythrough the atomk andl of an electrophile. The correspon-
relationship. Among the kinetic scales, the most important ding philicity®® related quantity was also reported recefitfy.
is that of Mayr and co-worker8$120 They have rank ordered Novel reactivity and selectivity indices have been proposed
various nucleophiles and electrophiles in terms of tiir  as the integraf® between the electrophilic Fukui function
andE parameters respectively obtained from the associatedon one reactant and the nucleophilic Fukui function on the
experimental rate constants. Ritchie’s paramétets or other or a differencé® between two such functions. A similar
Swain-Scott parametet® are similar in spirit. Various integral index appears in quantum similarity studies &%o.
quantum chemical and spectroscopic quantities such asThe effect of excess nucleophilicity over electrophilicity or
LUMO energy?®®162 1€ NMR chemical shift,vco fre- vice versa (in a group sense) has been analyzed in the context
quencies?® 157 and charge decomposititi have been  of all-metal aromaticity/antiaromaticity and a possible mo-
correlated with the respective rates of the reaction. Ther- lecular electronic&®®
modynamic electrophilic descriptors are based on the strength Local softnes¥® and local electrophilicity* 3 also
of the bond formed between the electrophilic and nucleo- perform well in analyzing regioselectivity. Figures 6 and 7
philic sites. They include the HOMA index as a measure of depict the beautiful correlatiofishetween the experimental
aromaticity®® or other aromaticity indice®? bond force electrophilicity and respectively the global and local elec-
constant$? 1% covalent bonding interaction via an HPLC trophilicities of a series of benzhydryl cations.
assay-® solid-state synthesi€® K. parameter$®’” LUMO Li and Evan$®l192 have restated the local HSAB prin-
energies®17hydrophobicities®® redox potentiald® maxi- ciple?®®0 as, “For the softsoft reactions the site with the
mum acceptor superdelocalizabiliti®3 and solution phase  maximum value of the Fukui function is preferred and the
ionization potentiald> Uses of Hammett or Taft parameters preferred site for the harehard interactions is that with the
in various linear free energy relationships have also beencorresponding minimum value'The ambiguity in local
reportedt®155:315316A |inear correlation between the ioniza-  hardness is felt in the local version of the HSAB princi{Si&2
tion and activation energies for electrophilic additions is also Minimization of a local grand potential is ad h&.Even
known?%3 Most of these descriptors are empirical in nature, the minimization of energies of individual atoms does not
and it is not always possible to transfer the parameters for necessarily lead to the minimization of the overall energy
one class of compounds to the other. The Mayndtdrr of the molecule. While the Gauez-MéndeZ°*°2version
electrophilicity index is based on a firm footing. Originally, considers similar Fukui function (FF) values for preferred
it was introduced by Maynard et 8l.asw = %27, when interactions, the L+Evans® principle dictates the preference
they noticed that, compared to other descriptors, this quantity of soft—soft interactions in the maximum FF site whereas the
had a stronger correlation with the logarithm of the experi- minimum FF site is the best for the harbard interactions.
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Figure 6. Correlation between the experimental electrophilicity
(E) and the theoretical relative electrophilicitk®) of a series of )
benzhydryl cations. Reprinted with permission from ref 91. Aomic system

Copyright 2002 American Chemical Society. Figure 8. Variation of u, n, v, w, anddw/dN for neutral atoms
from He to Kr. Reprinted with permission from ref 207. Copyright
2003 American Chemical Society.

E
[
of chemical education. A periodic law may be stated®as:
“The properties of chemical elements and their compounds
are periodic functions of the atomic numbers of the ele-
ments”. Atoms with completely filled shells and subshells
are often relatively more stable and less reactive when
compared with their open-shell counterparts. As expected
from the principles of maximum hardness (MMP}¥8 and
minimum polarizability (MPP¥3-5¢ hardness increases along
1 a period and decreases along a group whereas polarizability
-8~ 17 ED = 0.85 . . 07
] g 5 N =20 decreases along a period and increases along a ¢r&ig”"
e P <0.0001 Alkali metals are the softest and the most polarizable while
) . . . . . noble gases are the hardest and the least polariZ&3f&.
15 -10 3 0 os 10 14 Electrophilicity also exhibits characteristic periodic oscilla-
Aw,. [eV] tions with maxima on halogens, which are most electrone-
c gative and least nucleophilic as wélf:2%” As shown in

Figure 7. Correlation between the experimental electrophilicity Figure 8, the variation ofou/dN] for neutral atoms mim-

(E) and the theoretical relative local electrophilicitdpc) of a . o
series of benzhydryl cations. Reprinted with permission from ref ICks”®” that of u because of the small vali€of y =

91. Copyright 2002 American Chemical Society. Y3[0m/0N] .

4
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However, it has been argué@Sthat the site with the mini- ~ 5.2. Excited States
mum FF is the least reactive and, in the absence of a proper ¢, the excited-state DFT calculations on atoms and
local hardness, hard reactions are to be analyzed in a d'ﬁerenholecules in various electronic states which happen to be
fashion at the local level. Of course, the minimum Fukui the lowest state of given symme®§21 or in ensembles
function condition may be used as a "tiebreaker” in SOMe ¢ tataa12-215 (along with the related penalty-function-based
specific strongly electrostatically controlled reactié?:d formalism19), it has been shovi#-22 that, “A system is
Since hard interactions are electrostatic in nature, the Fukuip - .yar and Ie,ss polarizable in its ground s,tate than in any of
function has been argued to be a poor descriptor for thesejs oxcited states and an increase in the excited state
reactions” Charge$™2**or associated quantiti®s®*such ¢, hibtion in a two state ensemble makes the system softer
as molecular electrostatic potentials and local hardnesses ar nd more polarizable”. This fact is in conformity with MHP
supposed to provide a better description for hard reactions._ 4 MPP . since an atom or a molecule is generally more
Other quantities used for this purpose include the 1s reactive in its excited state. For example, Biéx) values
electron energy of nitrogen in the substituted anifif¢he  (in au) of He atom in different electronic states are as follows:
average local ionization energf,*"pair-site nonlocal inter- 218 (15 1 51 (1.86)1P, 6.89 (117.92)!D, 13.09 (728.71);
actions} electron localization function$??®etc. Nuclear  1F, 21.95 (3536.36)). And the (i7) values (in au (eV)) of
Fukui functiong®-203 and electrofugalit}?* have also been  HE molecule are as follow&° (o%7%, 1=*, 5.86 (10.8);

introduced. 0?73, 31, 38.4 (4.97),0%7%%, U1, 39.5 (3.91)). Even in
. time dependent situatiof#g2+22% involving excited states
5. Intramolecular and Intermolecular Reactivity including Rydberg state5-228 this fact remains valid.
Patterns Any system is generally less electronegative in its excited
5.1. Periodicity state*® The behavior of electrophilicity in the excited state
o in comparison to that in the ground state, however, will

The concepts of atomic shell structure and chemical depend completely on the relative variationgiandz; upon
periodicity as proposed by Mendeleev form the cornerstone electronic excitation, although both of them often decrease.
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Figure 9. Plot of electrophilicity index @) versus cutoff radius -25.00 2000 1500 -1000 500 0.00
(Rc) for atoms (He, Li, Be, B, C, N, O, F, Ne) confined in a
spherical box. Reprinted with permission from ref 230. Copyright AR
2003 American Chemical Society. Figure 11. Plots of global {) and local {si and wge) electro-

philicities of silylenes and germylenes versus their reaction energies

(AE) with a Lewis base such as NHReprinted with permission
—c from ref 147. Copyright 2005 American Chemical Society.
024-
—c* 5.4. Chemical Processes
"
c Both global and local electrophilicities have been found

to be helpful in analyzing the reactivity and selectivity
behavior of various chemical compounds as well as the
reaction mechanisms of diverse classes of chemical pro-
cesses. A plethora of systems have been studied including
pentazolato complexes of the first row transition metéls,
diazonium iong?8 carbonyl carbon#* fluorine substituted
disilanes3® carbened?23Fischer-type chromiumcarbene
complexe$?’ copper clusterd® zeolites?®® group-14 ele-
ments and related functional groufsaliphatic amineg#°

R. (au) alkaneg*! silylenes and germylené¥cobalt porphyrins and

. o ) related aza derivativé4? highly hindered polyanionic chelat-
Figure 10. Plot of electrophilicity index ¢) versus cutoff radius : : ' d .
(Rg) for ions (G n — 1,p2, 3 i) confidri()ad in a spherical box, Nd ligands?*2“organorheniurtf and organoneodymium

Reprinted with permission from ref 230. Copyright 2003 American COMplexes*® and thiadiazolium salts’ Figure 11 clearly
Chemical Society. reveal$*’ the power of global and local electrophilicities

. . through beautiful linear variation of the reaction energy with
For example, the; (1, ) values (in au) of He atom in  these quantities associated with the complexation reactions
different electronic states at the beginning of the process areof silylenes and germylenes with ammonia.

6 8 10

as follows!* (*5(1), 0.2591 (0.3920, 0.0856}P(1s2p), Intermolecular reactivity of carbonyl compounds has also
0.2044 (0.1315, 0.1589)). been studiett” using the group philicity. The importance of

. . a theoretical analysis of the philicielectrophilicity be-
5.3. Spherical Confinement havior in providing an effective synthetic protocol has

The concept of confined quantum mechanical systems been highlighted!*?*“The connection between the electro-
stems from the idea of simulating the effect of pressure on Philicity****%index and aromaticitf**>* as well as super-
atoms or molecules by confining them in impenetrable acidity®>*2* (superelectrophilicity) has been analyzed. Glo-
spherical boxe%° Numerical HartreeFock calculations ~ bal electrophilicity values need not always correfgteith
with Dirichlet boundary conditions of various global reactiv- the nucleus independent chemical shift valg@swhich

ity descriptors of several atoms and ions have revé¥iae characterize the magnetic aspects of aromaticity.
that all systems become harder and less polarizable with an The stability and reactivity of azametallocenes have been
increase in pressure. The inverse relationshipl 1/ol/3 studied®3in terms of their global electrophilicityx) values,

remains valid when the confinement volume is decreased.which corroborate the fact that the charge transfer from the
Electrophilicity is not very sensitié® (Figures 9 and 10)  ligand to the metal makes the aromatic pentazolato ligand
to confinement except for very small cutoff radii, where it more electrophilic. Similar studies on aza derivatives of
increases abruptly. Variations afwith the atomic number  cobalt porphyrin have reveal&d that an increase in the
(section 5.1) and degree of ionization (more positive charge number of aza-N atoms renders an electrophilicity enhance-
implies more electrophilic) remain unaltered for all possible ment at the cobalt center of the cobalt porphyrin complex.
extents of confinement. The presence of electron-withdrawing substituent groups on
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the carbonyl carbon atom in phenyl acetates has beenwhereas a large difference leads to a polar mechanism in
showrt®* to drive the nucleophilic attack at those carbon the corresponding ionic processes. Use of the Maynard
centers through the enhancement of electrophilicity. StudiesParr electrophilicity index and its local variant in understand-
on Fischer-type chromiumcarbene complexes have high- ing these aspects has been attempted mainly by Domingo
lightec?®” that their electrophilicity is reduced due to the and co-workers. In the normal electron demand reactions,
presence af--donor substituents because the acceptor orbital the presence of electron-withdrawing groups in the dienophile
in carbene gets occupied bydonation. Similar behavior  increases the reaction rates of the associated -Didier
has been reported for silylenes and germylenes as'ffell. reactions. In these reactions, the charge transfer is from the
Among the pyridyl substituted bis-coumarins, the para- diene-nucleophile to the dienophiteelectrophile. However,
compound is the most electrophilic wheareas the ortho- in the inverse electron demand-type reactions, an electron-
isomer is the least electrophifi¢é In the corresponding  withdrawing substituent is present in the diene and/or an
neodymium complexes, the carbonyl oxygen is the most electron-releasing substituent is present in the dienophile,
favorable site for the electrophilic attack in comparison to so that the charge gets transferred from the dienophile to
the hydroxyl oxygen, the lactone oxygen, or the nitrogen the diene. Rank ordering of various dienes and dienophiles
atoms?*¢ However, for metal coordination in the double- as electrophiles or nucleophiles has been done so that the
deprotonated compound, both carbonyl and hydroxyl oxygen reaction mechanism for a given pair may be ascertained at
sites become favorable sites for electrophilic até4&imilar the beginning’® Cycloaddition reactions with large ionic
analysis on organorhenium comple¥éshows that 2,2 character involving large electrophilicity differences include
azobis(5-chloropyrimidine) ligand (L) is a betteracceptor the reactions between 2-methylfuran and a maskbdnzo-
than the 2,2azobispyridine ligand (L) in the dinuclear radical quinone?’” substituted butadienes and ethylef&d,ewis
anion complexes: {(u«-L)[Re(COXCI],}. Electrophilicity acid coordinated 2-(trimethylsilyloxy)acrolein and furdd,
remains more or less constant for most of the fluorine etc., whereas those with a nonpolar mechanism include the
substituted disilane®® Neutral copper clusters, on the other concerted [4-2] process between 2-azadiene and cyclopen-
hand, exhibit odereven oscillationg3® as evidenced by tene/propené’? the concerted [32] process between ben-
experiments and theoretical calculations. Odd clusters arezonitrile oxide and ethynyl/propynylboron&®,etc. This
more electrophilic, are softer, and have the capacity to attainanalysis allows one to devise a strategy so that the changes
a closed shell configuration by accepting electrons. Adsorp- in the nature of the substituents in the dienes/dienophiles or
tion of small molecules and cracking of hydrocarbons in changes of the reaction conditions, including the presence
zeolites are properly accounted for by the philict. of a Lewis acid catalyst or a polar solvent, may change a
Theoretical calculation ofv using spin-orbit interactions nonpolar concerted process to a polar stepwise process. This
for halogens and group 14 atoms can reproduce the experi-causes an enhancement in the rate of the reaction and, in
mental trend of a monotonic decrease in electrophilicity by turn, of the yield of the corresponding kinetically controlled
going down the grouf? Global and local electrophilicities  products. Several related experimental trends are understood
can properly reproduce the experimental electrophilicity/ through the electrophilicity analysis. They include Lewis acid
nucleophilicity patterns of diazonium ioA%, aliphatic catalyzed [4-2] and [4+3] cycloadditions between cyclo-
aminesX*° carbonyl compound®*24°thiadiazolium salt$8’ pentadiene and arylidenoxazolor&s1,3-butadienes and
etc. This is also true in most of the other cases describeddimethyl acetylenedicarboxylat&, N-acyl-1-aza-1,3-buta-
above. As is demonstrated in the case of highly hindered dienes and vinylaming<2 nitroalkenes and aluminum de-
polyanionic chelating ligands, sometimes the theoretical rivatives of vinyl etherg/* butadiene derivatives and ac-
values even suggést?**possible efficient synthetic proto-  etone?’®and cyclopentadiene and cyanoethylefi&Broblems
cols. associated with this analysis in explaining inverse electron
The main classes of reactions for which the mechanismsdeémand Diels-Alder reactions have also been reportéd.
have been analyzed in terms of global and local electrophi- It has been arguéd that they are due to the inadequacy of
licities comprise 1,3-dipolar cycloaddition reactigfs2e7  the frontier molecular orbital theory.

specific cycloaddition reactions such as Dieldder Similar electrophilicity-based analysis has been extended
reaction?3268-275 with varied diene-dienophile pairs, and  to a variety of 1,3-dipolar cycloaddition reactions with a
other cycloaddition reactiorf$®-281 A typical Diels—Alder variety of dipole/dipolarophile pairs. Larger electrophilicity

reaction will follow a nonpolar pericyclic mechanism if the differences correspond to faster reactiéitPolar regiose-
electrophilicity difference between the diene and the dieno- lective reactions between nitrile/azomethine ylide and methyl
phile is small whereas a polar mechanism will be followed acrylate/propiolate have been properly accounted for by the
for a large value of this difference. relative global and local electrophilicities between dipoles

Cycloaddition reactions constitute the most widely studied @nd dipolarophile$®” The regio- and stereoselectivity of
pericyclic processes where twocomponents approach to  Various 1,3—d|polar gycloaddltlon_ reactions, such as that
form two newo-bonds within a cyclic framework. In the betweer) hlndered thiocarbonyl ylides 'a'nd tetracyanoethyl-
Diels—Alder-type cycloaddition reactions, a diene and a €ne* nitrile oxide and anthracene/acridiffé C-(methoxy
dienophile interact to form a six-membered ring product. carbonyl)N-methyl nitrone and methyl acrylate/vinyl ace-
Considerable enhancement in the rates of these reactions hd@te?* 5-ethoxy-3-p-(S)-tolylsulfinyl furan-2(5H)-ones and
been noticed in the dieralienophile pair with an electron-  diazoalkanes?? etc., have been shown to be in conformity
withdrawing substituent in one and an electron-releasing W|t_h those pred_|cted by the relative e!ectroph|I|C|ty pat'gerns.
substituent in the other. It is expected that the difference in This approach is found to be more reliatehan the frontier
their global electrophilicity values will provide important ~Molecular orbital theory.
insights into the associated reaction mechanism. Pericyclic Rank ordering of various dieneslienophiles/dipoles
processes with a nonpolar mechanism are characterized bylipolarophiles may be summarized as in the following
a small electrophilicity difference of diene and dienophile scheme$4275
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Large @

Small @

Strong electrophile (weak nucleophile):
electron-poor dienophile (e.g. acrolein)
and dipolarophile (e.g. nitroethylene) in a

normal electron-demand (NED) reaction

Weak electrophile (strong nucleophile):
electron-rich diene (e.g. 1-methoxy-1,3-
butadiene) and dipole (e.g. azides) in an

NED reaction

For inverse-electron-demand (IED) reactions: Local philicity ( a, ) or a group philicity

would be a better descriptor to identify the electron releasing (withdrawing) substituent

on the dienophile (diene)/ dipolarophile (dipole).

The following scheme provides a guideline toward the
possible reaction mechanism associated with a given Biels

Alder/1,3-dipolar cycloadditi

on reactid:264.275

Aw
(diene/ dienophile or dipole/ dip

olarophile interacting pair)

Small
Non polar, pericyclic,
concerted process,
frontier-controlled,
soft-soft interactions
e.g. Ethylene/1,3-butadiene reaction

Large
Polar, ionic, stepwise process,
charge-controlled,
hard-hard interactions
e.g. N-
cation/1,3-butadiene reaction

J0o],
lene

For Lewis-acid catalyzed reactions: Increased @) of the electron-poor component:

dienophile (NED reaction)/ diene (IED reaction)

Apart from these major types of reactions, the electrophi-
licity concept at both the global and the local levels has been
used to analyze a wide variety of chemical processes. They

include oxidation of thiophene8? catalytic olefination of
carbonyl compound& and polyhaloalkane®? reduction of
formylchromoneg$® hydride transfer reaction in 1-methyl
nicotinamide-lumiflavinesg formaldehyde decompositiGf?
intermolecular ligand exchange in alkyltin trihalick$,
dissociation of HS (HCN),287c discoloration of titanyl-
porphyrin?8”dnucleophilic addition to carbencarbon double
bonds?® Friedel-Crafts benzylation and acylation reac-
tions 282 metalation of oxazoline®¥? oxidation of thiols2®!
alkaline hydrolysis ofN-phenylacetamide®? ene reactions
of nitroso compound&? aminolysis of thiocarbonaté’ etc.

The main theme of these studies is to identify a reactant

which will act as an electrophile (larger value) or another
to behave as a nucleophile (smaltervalue). Apart from
the thermodynamic information content of as shown in

Figure 11, it has been shown to possess enough kinetic

information as welf88.289.294

Globalw values of nitroso compounds suggest that during

their reactions, such as ene reactions, they béPasggood

nucleophiles similar to singlet oxygen and triazolinediones.

Their electrophilicity stems from the fact that their HOMOs

are formed through high energy antibonding combination of
lone pairs of N and O centers and are orthogonal to their

low energyz* LUMO. The energy change associated with
the rate-determining step of the alkaline hydrolysis of

N-phenylacetamides has been shown to decrease with an 7

increase in their eletrophilicity valué® An electrophilicity
analysis of oxidation of thiols by cobalts;N complexes

Chattaraj and Roy

constants and the Maynar@arr electrophilicity index and/
or its local counterpart have been obtained for the Friedel
Crafts reactiond® nucleophilic addition involving the €C
double bond® and aminolysis of thiolcarbonates and
dithiocarbonate$? The reactivity patterns associated with
formaldehyde decompositidf’ intermolecular ligand ex-
change in alkyltin trihalide&” hydride ion transfef® etc.
have been properly analyzed in terms of the electrophilicity
index or its variants.

5.5. Solvent Effects

To understand the effect of a solvent on electrophilicity,
a variation ofw (eq 12) up to first order has been written by
Paez et ak® as

Ao(1—e) = (uly)Au — %(,u/n)zAn = Ao® + Ap®@
(27)

where e is the dielectric constant of the medium ang
andAn, respectively, describe the variationdrandny when
the system goes from the gas phase to the solution.
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reveals that azaporphyrins are very good electron acceptors

during the oxidation process, which gets improved in the

presence of polar solvert¥.The behavior of chloromethyl
derivatives toward metalation can be rationaliz&dQuan-

Figure 12. Plots of electrophilicity changes versus solvation energy
of a series of both charged and neutral electrophilic ligands.
Reprinted with permission from ref 295a. Copyright 2001 American

titative linear relationships between the experimental rate Chemical Society.
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Figure 13. Variation of the electrophilicity index and the dipole moment in a vacuum and solvent along the reaction path of the intramolecular
rearrangement reactiortransN,H, — cis-N;H,. Reprinted with permission from ref 300. Copyright 2001 American Chemical Society.

The insertion energy\Ei,, of the solute going to solvent
is defined as twic&%2%8the energy of solvatiomEsqy, i.€.

W(1—e) = (AE M)
Aw(1—€) (AN)V(?)(A/,{ y(?)AM
E(c) — E(1) = 2AE,,, (28)

dipole moment does not always pass through an extremum
at the TS. In both the cases, the solvation decreases the
electrophilicity.

The reactivity of several systems has been studied to gain
insights into the solvation effects on both global and local
electrophilicities. Charged peroxidé&s,cyclopropane ring
opening in duocarmycin SA derivativé®,various electron
donorst® aliphatic amine$#° different organometallic com-
poundsi®® carbonyl compound®* dye-redox mediator
reactions® etc. have been studied for this purpose. In
general, the reactions become easier to perform in the
solution phase, with some excepticisThe effects of the

A linear relatiori®* betweemAw(1—¢€) andAEsqy for a series  solvent are more pronounced for the global electrophilicity
of both neutral and charged electrophilic ligands as shown than for its local variant.

in Figure 12 highlights the authenticity of this approach.

A somewhat similar and related analysis has been pre- i
sented in refs 299 and 300. In these papers, the effects of5 6. External Field Eftects
solvent on two intramolecular rearrangement reactions, viz., The reactivity of a chemical system changes drastically
transN.H, — cis-N;H, and RS, — FSSF, have been in the presence of an external field. This field may be an
studied?®?3|t has been demonstrated that solvation makes explicit external electromagnetic field or it may arise due to
the reactions more favorable both thermodynamically and the presence of another molecule (reagent/reactant) and/or
kinetically. As shown in Figure 13 for the N, rearrange- a solvent. The nuclear Coulomb potential in the parent
ment,w passes throudgff an extremum at the transition state molecule being experienced by its electrons would get
(TS) for both the reactions and both the phases although theaugmented by the potentials generated due to the electrons

~AE .=

ins

The second term of eq 27 becomes

AwP(1—e) = (29)

U
7AN Esonv
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and nuclei present in the reactant/reagent/solvent moleculederase induction byert-butylhydroquinoné}® the mutage-
in addition to the possible electron transfer between them. nicity and DNA damaging potential oN-acyloxy-N-

All these effects, including any external electromagnetic field, alkoxymides®?® DNA alkylation of duocarmycing® the
can be simulated by the presence of an external generic field.antioxidant activity of quercet®? and catechid?'® the
An explicit dynamical study on the variation of chemical antitumor and antibacterial activity of kinamycins and lomai-
reactivity in the presence of an external electric field will viticin A,322 the antileukaemic activity of phenéi?® etc.

be discussed in section 7. Similar studies have been performed in showing the
Changes in molecular reactivity and selectivity due to the importance of the electrophilicity concept in analyzing the
presence of an applied uniform electric field are analy?éd.  role of methylidene imidazolone as an electrophilic prosthetic
The internal electrostatic field of the molecule plays a crucial group32® aquatic toxicity'®%162 polymeric surfactants as
role in determining the chemical reactivity when the strength glutathione transferase mimié$;324charged phenyl radical
of the external field is low. However, at larger field strengths, activity toward nucleic acid componer#,in vitro trypano-
significant variation in reactivity has been observed. cidal activities of some typical heterocyclic quinorié&he
Since any quantum system can be completely characterizedmportance of the standard-helix motif in biological hydroly-
by its number of electronsN) and the external potential  sis327 the function of the Michaelis complex of pl258
(v(r)), variation in any property of that system, including its  arsenate reductad® the behavior of zinc fingers related to

chemical reactivity, may be analyzed by chandihandu(r). retroviral activity64 suppression of breast cané&tHIV-1
Fglg example, the change in chemical potential may be written nucleocapsid protein p?;144Escherichia coliAda proteint44
a etc.
The toxicity of polychlorinated biphenyls has been stud-
du=ndN= ff(_f) du(T) d7 (30) ied?30:331through the profiles of electrophilicity and philicity
in both gas and solution phases. Figure 14 depicts the
For a uniform electric fieldE(r) it may be written as variation of these quantities for 2,2,5-tetrachlorobiphenyl
as a function of the torsional angle. High rotational energy
du =5 dN — ff(‘r’) E(T') dT dr’ (31) barriers do not allow the toxin to rotate freely in a real

environment so that it can interact with the cellular compo-
Therefore, the changes in chemical potential would be nent of a living systenis®-333 Therefore, toxicity is related
directly proportional to the strength of the external field when to the low rotational barrier. A comparison between the
there is no charge transfer. It has been shi8Whatu and rotational energy profile and those of the hardness and the
o get significantly altered when the external field strength polarizability clearly delineat€®33!that the high toxicity
is increased. The effect of the external field is only marginal of PCBs is related to the minimumvalue and the maximum
in the case ofy, which implies that the second-order variation o value, as expected from the MHP and the MPP. The
in the energy due to external perturbation is less than theelectrophilicity is often maximum in those conformations.
corresponding first-order variation. A dynamical variant of The most active toxic sites are identified through the philicity
this will be analyzed in section 7. profiles.

Local reactivity indices such as the Fukui function and  The biological activities of various testosterone derivatives
the philicity have been show#l to change drastically inthe  in terms of relative binding affinity (RBA), androgenic
presence of the external field. It may be noted that the potency, relative androgenic activity, therapeutic index,
variation off* and w* are not similar because the global TeBG affinity, relative competition indices, binding affinity
electrophilicity also changes in this case. All these changesfor rat ventral prostate receptor protein, and myotrophic to
become more pronounced as the number of atoms in theandrogenic potency in temporal as well as some estrogen
molecule and the external field strength increase. derivatives quantified in terms of their RBA values have been

The effects of the external potential variation on reactivity showr#*to correlate strongly with the electrophilicity index,
and regioselectivity have been analyzed within variati$fial  suggesting it to be a suitable descriptor of the biological
as well as perturbativé*°frameworks. A cooperative effect  activity of these systems.
of the solvent and surface together to increase the reactivity e toxicity of polychlorinated dibenzofurans (PCDFs) and
has also been reportéd. dibenzo-p-dioxins (PCDDs) has been correlated with the

. . - - electrophilicity index. The correlation is reasonably gé&d.
5.7. Biological Activity and Toxicity Howevgr, a )éombination of electrophilicity and ypgflﬂlicity

There has been a recent upsurge of interest in unravelingdrastically improves the situatiof} as is authenticated by
the connection between electrophilicity and biological activ- the analysis of the toxicity of various electron-donor- and
ity, especially toxicity, mutagenicity, and carcinogenicity in €lectron-acceptor-type toxins, measured by their pi@ata,
different chemical, biological, and biochemical systétgl?  toward Tetrahymena pyriformisit also highlights the
to broaden the applicability of the associated quantitative importance of charge transfer between a toxin and a
structure activity relationships (QSAR). Most of these biosystem for an overall understanding of toxicity. Experi-
analyses are qualitative in nature with more interpretive mental toxicity values (pl§) of a variety of polyaromatic
power and relatively less predictive potential. Based on thesehydrocarbon¥’ such as PCDFs, PCDDs, and polychlorinated
newly acquired ideas, strategies for rational drug designs havebiphenyls (PCBs) as well as those of several aliphatic
been developed. Relationships have been shown betwee@mined® correlate well with the corresponding toxicity
electrophilicity and allergic contact dermatitis,including values calculated using the HF energy along with the global
skin sensitizatio!>36the activity of phase 2 enzyme and and local electrophilicities.
glutathione in protecting mammalian cells from malig- To avoid collinearity and overfitting, plé& values of
nancy3'’ the toxicity of organic chemicals tbetrahymena  several electron acceptor toxins such as PCDFs and PCBs
pyriformis'®® andChlorella vulgaris,38 glutathione S-trans-  are correlated with only one parameter,and for the donor
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Figure 14. Variation of relative energy, electronegativity, global electrophilicity index, and local electrophilic power ‘06,252
tetrachlorobiphenyl with the torsional angle. Reprinted with permission from ref 330. Copyright 2003 American Chemical Society.

toxins such as aliphatic amines and amino alcohols, the The number of carbon (non-hydrogenic) atomds,(Nyn)
related plGGo values are correlated with the related maxi- may be considered to be a crude alterndffeto the
mum local nucleophilicity values to obtain beautiful n-octanol/water partition coefficient (corresponding IBg
correlations’®*® The regression model is more robii&tfor also correlate®® to No/Nyp) in developing QSAR/QSTR
acceptors than for donors. For example, the regressionmodels which can be further improv@&tP336chy addingw
equations for 171 acceptors comprising saturated alcohols,and/or its local counterpart®) as well as charges on the
diols and halogenated alcohols, mono and diesters, carboxylicrelevant atomsg). Of course Nc/Nyy is lot more easy to
and halogenated acids, aldehydes, and ketones and for 8bbtain than log®. Several recent publications highlight the
donors comprising unsaturated;-acetylenic and amino  importance of electrophilicity in understanding biological
alcohols and amines with toxicity towar@ietranymena  processes and obtaining QSAR/QSTR mod&tg3tak Al-

pyriformis are as follows®°¢ thoughNc/Nyn/log P can be used for a broad spectrum of
moleculesw/w*/g« depends on the electronic environment

Acceptors: and hence should be applied to a group of congener

predicted (pIGG,) = 1.000(0.020) moleculesi®*® as was don&®for nine acceptor groups and

four donor groups separately.

—11
observed (pIG6y) — 1.708x 10 7(0.019) In this section, the electrophilicity patterns related to

R2=0.937 Re 2_-0936 SD=0.241.N= 171 chemical periodicity, the excited state reactivity, confined
eV AR R systems, and various intermolecular and intramolecular
Donors processes, including solvent and external field effects and

. biological activity, have been reviewed. The MaynaRharr
predicted (pIGCS0y= 1.000(0.036)x electrophilicity index and its local variants not only support
observed(pIG&) — 1.044x 10 *°(0.039) the trends expected from chemical intuition but also provide

) new directions in analyzing reaction mechanisms of a diverse
R = 0.904,R.,” = 0.899, SD=0.232,N = 81 class of chemical reactions.
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6. Variation of the Electrophilicity Index during
Physicochemical Processes Such as Vibrations,
Internal Rotations, and Chemical Reactions

6.1. Molecular Vibrations

It is important to know how the chemical reactivity of a
molecule changes when it undergoes vibration, internal
rotation, or chemical reaction. To analyze specifically the
behavior of the electrophilicity indexa, eq 12) in this
regard, one starts from a first-order derivative of it as

follows?207:338
do _plou u\?(on
A y\ar n] \oA

where A may be a bond length (stretching), bond angle
(bending), dihedral angle (internal rotation), or reaction
coordinate (chemical reaction).

The extremal behavior ab results from that oft andy.
If both « and n are extrema (also constants or having
inflection points),w will be an extremum, and at that point
the following condition will be satisfied:

1

~5 (32)

on
a

u u

=2 (33)

So the extremum of electrophilicity will occur when the
slopes of the changes im and » are of opposite signs,
because: < 0 andy > 0, owing to the convexity in energy.
Therefore,w will be a minimum (maximum) when both
and#n are maxima (minimaj?7.300.338

Various global reactivity descriptors of water, ammonia,
and ethane have been calculd@®dor their equilibrium

geometries as well as the distorted geometries originating 312

from displacements along normal coordinates of vibration.

The extremal analysis made above has been found to be true.

For H,O and NH;, the minimum energymaximum hard-
ness-minimum electrophilicity criteria for the equilibrium
geometry have been sho#fito be true when compared with

Chattaraj and Roy
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Figure 15. Profile of the maximum charge transferred during the
internal rotation of the hydroxylic group of the enol form of guanine.
Reprinted with permission from ref 339. Copyright 2003 American
Chemical Society.

tion states$*® This unexpected behavior may be rational-
izecP%® by the fact that botlx ands; are maxima at the TS.

6.3. Chemical Reactions

In the intramolecular rearrangement reactidransN2H,
— cis-NzH; and RS, — FSSF, it has been shown that ¢,
w) values at the TS are respectively (maximum, minimum,
minimum) and (minimum, minimum, maximum), as depicted
in Figure 13. The behavior of the latter reaction is as
expected. To gain further insights into the former reaction
where ¢ is maximum andy is minimum, one needs to
analyzé&®” the following second derivative

Po_afol? fon)? e fau)on
n\oa] 2|0 2\ 92|\ o
2
p|ou u? [0u
o e R P
m\ar?| 2 yp*\oa

Since the first derivatives are zero at the extremal points,

corresponding quantities for displacements along all allowed the exact nature of the extremal (maximum or minimum) in

normal modes. For &g, however, it is not true for a few
normal modes becauge does not possess the maximum
value wherey is maximum in those cases.

6.2. Molecular Internal Rotations

It has been observéd during the internal rotation of the
hydroxylic group of the enol form of guanine that the stable
conformations are associated with minimum energy, maxi-
mum hardness, and minimum electrophilicity values, as

w at the TS would be governed by the relative magnitudes
of the last two terms of the above equation for this type of
reaction or where: is minimum andy is maximum at the
TS.

Figures 16-18 represeit’ some more interesting cases
respectively in the CNH> HCN isomerization reaction, oxy-
gen to oxygen proton transfer in HEGC(=0)—C(=S)—0OH,
and oxygen to sulfur proton transfer in HE=0)—
C(=S)—OH thioxalic acid derivatives, highlighting the

would have been expected from the above analysis. Thevalidity of the above analysis. Similar findings on 1,3-intra-
corresponding transition states have been shown to be themolecular proton-transfer reactions in HXNY> XNYH

most electrophilic. This fact is confirmé&d for the internal
rotations of formamide, which is not obvious for hydrogen
peroxide. Figure 15 depicts the profile of the maximum
amount of charge transfer@8during the internal rotation
of the enol group of guanine, which mimicks the corre-
sponding electrophilicity behavior, as expected. As sHévn
in Figure 11, energy and electrophilicity show a strong linear
correlation in this case as well. Internal rotation of the phenyl
group induces the reactivity inans andcis-phenyldiazene.

(X, Y = 0O, S) have also been report&d
If u?> does not change significantly (or decreases) and
increases (cf. MHP), the minimum electrophilicity (=

w?l2n) criterion may be attached to a favorable chemical

process. In many exchange reactions, one of the products is
the least electrophilic (among the reactants and the products)
and the average product electrophilicity is less than the
average reactant electrophilicft§? which may be termed

as the minimum electrophilicity principle, as suggested by

For both isomers, the planar conformers are the most electro-the preceding analyst8’3°-33%ven for various isomers, the

philic and transition states are the least electrophilic (the cis-

isomer has a maximum value in one of the TSs), which
accounts for the extra electronic delocalization in the transi-

hardest one would be the least electropHiti€when theu?
behavior is as mentioned above, and hence will be the most
stable.
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A thorough study has been performed to analyze the + CH;—F, — F.—CH; + F,™. In ref 343 the Mulliken
profiles of global and local reactivity descriptors during charges were made use of. The corresponding populations
vibration, internal rotation, and chemical reactidhMost are used in Figures 19 and 20. Local reactivity descriptors
of the characteristics discussed in this section are found topass through a point of inflection in the transition state. This
be valid. Variations in the Fukui functions and the atomic inflection point coincides with the saddle point of the reaction
charges along the reaction path have also been stefdidis and provides a link between bonding and reactivity. For a
analysi8® highlights the failure of the Fukui function and thermoneutral reaction, similar profiles for the bond-making
the usefulness of the charges in explaining hdrdrd and the bond-breaking processes intersect at the transition
interactiong4-97 state. The importance of these local descriptors is vindicated

Figures 19 and 20 present the profiles of various local through a comparison with the profiles of standard indicators
reactivity descriptor8¥®including we,” andwg,~, along the such as energy and bond order. FrgeiB more reactive to
reaction path (IRC) of the gas-phasg2ubstitution: E start with, and it gradually becomes less reactive as it



PR62 Chemical Reviews, 2007, Vol. 107, No. 9 Chattaraj and Roy

_—
o -
i L
w” In
L S
- =
8 ¢ 92
- = m s
5 ucd
8 B g 3
- & e
Iwu- w
' " P——— “_I.I.
wt —— Energy
2 ' 0 ' 2
IRC

Figure 19. Profiles offrys (f =f, s, w), frs (f =1, S, w), the bond order (BO), and the energy along the reaction path of the gas-phase
Su2 substitution: E + CH;—F, — F;-CH3 + F,~. Reprinted with permission from ref 343. Copyright 2005 American Chemical Society.
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Figure 20. Profiles offes™ + frp™ (f =1, s, w), fra™ + fro™ (F = 1, s, w), and the bond order (BO) along the reaction path of the gas-phase
Su2 substitution: § + CHz;—F, — F;,—CHs + F, . Reprinted with permission from ref 343. Copyright 2005 American Chemical Society.

becomes bonded. On the other hand, bondgdsRhe least strengthens them. According to TDDFT, which offers a time

reactive at the beginning, and it becomes more and moredependent extension to the original Hohenbédfghn theo-

reactive as it is released during the course of the reaction torems, the mapping between the time dependent external

have the most reactive freg & At the transition state, both  potential,»(F,t), and the densityp(rt), is uniquely invertible

F.- and R~ are equally reactive, as expected for a thermo- up to an additive trivial time dependent function in the

neutral reactio?*® Much work is needed in obtaining a more  potential. This implies that all the properties of a system are

transparent view of how bonding, reactivity, and dynamics functionals ofp(F,t) and the current densif{r.t), whose time

complement one another. evolution for any many-electron system is governed by two
basic QFD equation®%347viz., the equation of continuity,

7. Dynamical Variants

7.1. Quantum Fluid Density Functional Theory %Jr V'T =0 (35a)

As discussed in section 3, two important time dependent at

density-based quantum mechanical theories are quantum fluid : :

dynamics (QFD¥ and the quantum theory of motion and a Euler-type equation of motion

(QTM).8 The quantum domain behavior of classically BT

chaotic systems has been studied by using these thétiés. = P[p(T 1), | (F O] (35b)

Time dependent density functional theory (TDDEP$47 at
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Figure 21. Time evolution of the external electric field with different colors and intensities. Reprinted with permission from ref 145.

Copyright 2001 American Chemical Society.

whereP is a functional whose form cannot be ascertained
from TDDFT. To have an approximate form fd?, a
quantum fluid density functional theory (QFDF33224.348351

has been proposed via an amalgamation of TDDFT and QFD.

The basic equation in QFDFT is a generalized nonlinear
Schralinger equation (GNLSE) as follows (in a.u.),

_9D(T 1)

I (36a)

’— %VZ + ueﬁ(T,t)]¢(?,t) =

where the effective potential may be written as

9E,.
ap
I p(r'.1)

[r—7]

ATw
ap

V(T 1) = — 4
dF’ + v, (T 1) (36b)

whereTnw andEy. are the non-WeiZsker part of the kinetic
energy and the exchange-correlation energy functional,

collisions834% and atom-field interactions®®%35! As dis-
cussed in section 5, these two processes may be considered
to mimic the external perturbation a molecule experiences
during a chemical reaction.

7.2. Atom —Field Interactions

The external potentialex(r,t) in GNLSE (eq 36b) of this
problem has been writtétt35%35for an atom in its ground
and excited electronic states interacting with a z-polarized
laser field of varying intensities and colors. Figure 21
presents the time dependence of the external field for three
different field intensities for monochromatic and bichromatic
pulses. The time evolution gf and# shows that the in-
phase oscillations are observed only when the external field
intensity becomes appreciable. To start with, the electron
density will have a spherical distribution due to the central
nature of the nuclear Coulomb field. A tug-of-war between
this and an axial laser field will begin once the latter is
switched on. It has been shotththat » is less sensitive

respectively. The density and the current density are relatedthanz. Only when the strength of the external laser field is

to @(r,t) as follows

p(T 1) |O(T B (37a)

and
J(F) =@V, — O, VD] (37b)

This GNLSE has been alternatively derived via a stochastic
quantizatio®*® and has been solved to study ieatom

large enough to overcome the effect of the nuclear field do
the in-phase oscillations in the reactivity parameters start.
The electron density becomes cylindrical, and an oscillating
dipole results. Figures 22 and 23 clearly delin&atthese
aspects in the plots of time dependentand 1/, respec-
tively. At the very large field intensity, the difference in
response ofu and » is manifested in these plots. A
corresponding analysis on the Rydberg states of hydrogen
and helium atoms provides important insights into their
chaotic ionizatiorf?6-228
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Figure 22. Time evolution of electrophlicity index«{) of a helium atom in ground and excited states in the presence of external
electric fields with different colors and intensities. Reprinted with permission from ref 145. Copyright 2001 American Chemical
Society.

7.3. lon=Atom Collisions ions 3% Friedel-Crafts reaction&?8°aminolysis of thiocar-
bonateg?* etc. have been studied for this purpose. Figure

For the ion-atom collision problemye.(,t) comprises 27 depicts a representative plot for a series of thiocarbonates

the electron-nuclear attraction potentials originating from  reacting with piperidiné®*

the target and the projectile nucf8>6.22+225.343:34Fgures In general, these correlations are obtained for a set of

24-26 present the time evoluti¢hof , 7, anda, respec-  molecules of similar chemical reactivity and often the outliers

tively, for a collision between a proton and an X-atom/ion gre to be removed for obtaining a meaningful correlatfdh.

(X = He, Li*, Be*", B%*, C*) in various electronic states. A linear correlation between the rate constant artths also

The dynamicu profile has been shown to divide the whole heen propose#* Both logarithmi@®353 and linea#53352

collision process into three distinct regimes: viz., approach, relations between the Hammett constant and the electrophi-

encounter, and departure. In the encounter regime, the actuajicity index have been reported. The experimental Hammett

reaction takes place wheremaximizes andx minimizes,  substituent constant correlates W&lwith its theoretically

showing the validity of the MHP and MPP in a dynamical calculated electronic contribution for a series of substituted

situation. The HSAB principle also has revealed itself in alkenes, as shown in Figure 28.

action, and the associated regioselectivity of a reaction has some other related studies include those on reactivities

been analyzeth?? The dynamicw profile resembles that  of carbon-centered radicaf¥,dienophile$7! carbon-carbon

of u for different projectile velocities and impact parameters double bond38 metal polypyridyl complexe¥s and some

in both ground and excited statéand hence is not shown  radicals toward hydrogen abstractihA slightly different

here. version of Parr et al.'s definition has been used for the
calculation of absolute rates of atom abstractions by radi-
7.4. Chemical Kinetics cals$®6:3%7as well as ultrafast excited-state proton tranfer.

The quality of the leaving groups has been quantfft&dn
Ever since Maynard et &t.pointed out the linear relation-  terms of electrofugality and nucleofugality, which help in
ship between the logarithm of the rate coefficients and the analyzing the reactivities associated with electrophilic and
electrophilicity index associated with the reactions between nucleophilic processeslectro- (nucleo)philicity may be
HIV-1 nucleoccapsid protein p7 and several electrophilic considered to be a kind of inverse of nucleo- (electro)-
reagents, there has been a renewed interest in analyzing thisugality.1'82%4Although there have been sofff& 9 attempts
behavior for a variety of reactions. Hydrolysis of carbenium in this regard, it needs to be analyzed whether we are
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Figure 23. Time evolution of nucleophlicity index (&) of a helium atom in ground and excited states in the presence of external electric
fields with different colors and intensities. Reprinted with permission from ref 145. Copyright 2001 American Chemical Society.
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Figure 24. Dynamical chemical potential profile during a collision process between an X-atom/ien K¢, Lit, BE", B3*, C*) in its
ground state and a proton. Reprinted with permission from ref 40. Copyright 2003 American Chemical Society.

comparing thermodynamic and/or kinetic propertieslt is 8. Spin Dependent Generalizations
also necessary to study whether a good electrophile or a poor, .

nucleophile will be a good nucleofuge and vice versa. As 8.1 {N, Ns, v()} Representation

was pointed out*2it has been numerically verified thatthe  The reactivity and selectivity descriptors defined so far
definition is not always usefdP are inadequate in the study of reactions involving changes
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Figure 25. Dynamical hardness profile during a collision process .
between an X-atom/ion (% He, Li*, Be#*, B3*, C*") in various 10

electronic states and a proton. Reprinted with permission from ref
40. Copyright 2003 American Chemical Society. Figure 28. Plot of the experimental Hammett constaog)(of a

series of substituted ethylenes versus its theoretical counterpart

20— ) 20 T . (op(w)). Reprinted with permission from ref 353. Copyright 2003
15 /He / 15 NS P W American Chemical Society.

o' Y S a ' N Y/ B spins, respectively, with the corresponding denspieand
5 1M ! s, the electron densityp(F), the spin densityor), the
00— TR TN oo 3 AT T electron numberN, and the spin numbel\, are defined
20 T - 2.0 : 7 y a§59‘364
18] \ _x"' B3+. 15 \"'-\___ / Bezf : . N N

wte] N @ 10 \/ / P(T) = po(F) + ps(T) (382)
5 Iy . pAT) = pu(F) = py(T) (38b)
P S oty oo N=N, + N, (38¢)
15 C"“‘r

@, Ns= N, — Ng (38d)
0s The corresponding chemical potentia\f and spin potential
[ I B I T (us) are given byee364

Figure 26. Dynamical polarizability profile during a collision oE

process between an X-atom/ion € He, Lit, Be#t, B3, C*) UN— (m)N ~ (39a)

and a proton. Reprinted with permission from ref 40. Copyright 5v(7)

2003 American Chemical Society. 9E

ws=(55). . (39b)
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Figure 27. Plot of the experimental nucleophilic rate coefficient tions of the electrophilicity index. Spin philicity and spin

(ky) for a series of thiolcarbonates reacting with piperidine, versus donicity have been defined by Rz et al3%% extended by
electrophilicity index. Reprinted with permission from ref 294. \elin et al.367 and revised by Olah et &89 in this
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Spin dependent philicities can also be obtaffiedyy
knowing the above quantities and the various Fukui functions
in this representation as described below:

in spin multiplicity, including spin catalysis. A spin polar-
ized version of DFT has been developed for this pur-
pose®¥9-3%4 For a system wittN, andNz numbers of and
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() (o
fNN(r)_( N )Ns,v(?)_(BV(T))N,NS (412)

dp(T o
fNS(T) - ( g'(\lrs))N,V(?) ( q )N.NS (410)
A

ov(T)
and similarly for fsy(f) and fsqF). Some of these local ¢
quantities have been calculatétin analyzing the regiose-  AIM

lectivity in the [2+2] photocycloaddition of enones to B3LYP
substituted alkenes. [on/oN]
AEins
8.2. {No, Ng, v(7)} Representation Do
An alternative representation may be develdfety Al

defining various global and local reactivity descriptors DNA
explicitly for the spin up and spin down cases as follows: [dw/dN]

€HoMO
Chemical potentials ELF
OE JE Lo
Uo = o v Mg = o (423) Exc
’ (3Na)Nﬁ,v(?) / (aNﬂ)Nﬂ,v(?) Fe
Hardness |:k[p]
8/40() (aﬂﬂ) ()
T (aNa N (7) 765 = \ON ) (420) GNLSE
n(rr)
ou g HF
Mogp = (a—ﬁ) = (m) =M (420)
BIN,v(T) Q N/j,v(?) HOMA
Fukui functions :gXIE?
9p,(T) 9ps(T) '
f (?)=(— D () = [ (43a)  ICs
x 3Na Ngv(T) A8 3Nﬁ N, ¥(T) 1GCsp
. - IRC
9p(T) 9ps(T) iF.0
f (?)z( D () = (43p) "
o BN/; N,(F) pe N, Ngv(T) E

Making use of the above quantities, the spin dependentt"UMo
variants of the electrophilicity index and the philicity may
be easily derived® The representation to be used would mqyy
depend®® on the nature of the spin multiplicity change in  MHP

the given spin polarized process. MPP
Us
: N
9. Conclusions ved)

The tremendous power of the electrophilicity index NICS
proposed by Parr, Szentpaly, and Liu provides insight into NMR
almost every arena of chemistry and encompasses informaN
tion about the structure, properties, stability, reactivity, &(T')
interactions, bonding, toxicity, and dynamics of many-
electron systems in ground and excited electronic states. Theocpp
recurring theme of this review has been the electrophilicity pcprg
concept in general, with the common thread being the QFD
Maynard-Parr electrophilicity index. The whole gamut of QSAR
the conceptual density functional theory lends support toward QTM
the electrophilicity index and helps it realize its full potential. RBA
As is the case for most of the conceptual DFT-based p(F)
reactivity/selectivity descriptors, the global and local elec- Ps
trophilicities possess strong interpretive power, which itself =,
is important in understanding a diverse class of bio-
physicochemical processes. However, their predictive capac-gy
ity has yet to be assessed. We conclude with the optimistic TpprT
note that the electrophilicity will exhibit its tremendous TeBG
predictive potential, which, along with its existing interpretive t¢
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characteristics, together with those of the other descriptors,
will be adequate in developing a complete theory of chemical
reactivity.

10. Abbreviations and Symbols of Some
Important Subjects/Quantities

electron affinity

polarizability

atoms-in-molecules

Becke three-parameter Le¥ang—Parr functional
variation of hardness with electron number
insertion energy

energy of solvation

density functional theory

softness matching index
deoxyribonucleic acid

variation of electrophilicity with electron number
highest occupied molecular orbital energy
electron localization function

lowest unoccupied molecular orbital energy
exchange-correlation energy functionals
Fukui function

condensed Fukui function
Hohenberg-Kohn—Sham universal functional
Fukui function

hardness

generalized nonlinear S¢kinger equation
hardness kernel

Hartree-Fock

human immunodeficiency virus

harmonic oscillator model of aromaticity
highest occupied molecular orbital

hard and soft acids and bases

ionization potential

50% inhibitory concentration

50% inhibitory growth concentration
intrinsic reaction coordinate

current density

equilibrium constant

rate constant

hydrogen bond strength

lowest unoccupied molecular orbital
chemical potential

carbene-philicity scale

maximum hardness principle

minimum polarizability principle

spin potential

number of electrons

time dependent external potential
nucleus independent chemical shift
nuclear magnetic resonance

natural population analysis

external potential

spin number

polychlorinated biphenyl

polychlorinated dibenzp-dioxin
polychlorinated dibenzofuran

quantum fluid dynamics

quantitative structureactivity relationship
guantum theory of motion

relative binding affinity

electron density

spin density

softness

condensed softness

substitution nucleophilic bimolecular
local softness

time dependent density functional theory
testosteroneestrogen binding globulin
Thomas-Fermi kinetic energy density
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Taw non-WeizSaker part of the kinetic energy
TS transition state
qu guantum potential
Vau(T1) time dependent quantum potential
O(T 1) 3-D hydrodynamical wave function

electronegativity
many particle wave function for aiN-electron
system

X
W% %o, )

w electrophilicity index

w* directional electrophilicity index
o condensed philicity

(r) philicity

w*(T) directional philicity
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